A Frozen Jacobian Multiscale Mortar Preconditioner for Nonlinear Interface Operators

نویسندگان

  • Benjamin Ganis
  • Gergina Pencheva
  • Mary F. Wheeler
  • Tim Wildey
  • Ivan Yotov
چکیده

We present an efficient approach for preconditioning systems arising in multiphase flow in a parallel domain decomposition framework known as the mortar mixed finite element method. Subdomains are coupled together with appropriate interface conditions using mortar finite elements. These conditions are enforced using an inexact Newton–Krylov method, which traditionally required the solution of nonlinear subdomain problems on each interface iteration. A new preconditioner is formed by constructing a multiscale basis on each subdomain for a fixed Jacobian and time step. This basis contains the solutions of nonlinear subdomain problems for each degree of freedom in the mortar space and is applied using an efficient linear combination. Numerical experiments demonstrate the relative computational savings of recomputing the multiscale preconditioner sparingly throughout the simulation versus the traditional approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Global Jacobian Method for Mortar Discretizations of Nonlinear Porous Media Flows

We describe a non-overlapping domain decomposition algorithm for nonlinear porous media flows discretized with the multiscale mortar mixed finite element method. There are two main ideas: (1) linearize the global system in both subdomain and interface variables simultaneously to yield a single Newton iteration; and (2) algebraically eliminate subdomain velocities (and optionally, subdomain pres...

متن کامل

SPE-172990-MS A Multiscale Mortar Method And Two-Stage Preconditioner For Multiphase Flow Using A Global Jacobian Approach

We consider a fully-implicit formulation for two-phase flow in a porous medium with capillarity, gravity, and compressibility in three dimensions. The method is implicit in time and uses the multiscale mortar mixed finite element method for spatial discretization in a non-overlapping domain decomposition context. The interface conditions between subdomains are enforced in terms of Lagrange mult...

متن کامل

Efficient algorithms for multiscale modeling in porous media

We describe multiscale mortar mixed finite element discretizations for second order elliptic and nonlinear parabolic equations modeling Darcy flow in porous media. The continuity of flux is imposed via a mortar finite element space on a coarse grid scale, while the equations in the coarse elements (or subdomains) are discretized on a fine grid scale. We discuss the construction of multiscale mo...

متن کامل

A Global Jacobian Method for Mortar Discretizations of a Fully Implicit Two-Phase Flow Model

We consider a fully implicit formulation for two-phase flow in a porous medium with capillarity, gravity, and compressibility in three dimensions. The method is implicit in time and uses the multiscale mortar mixed finite element method for a spatial discretization in a nonoverlapping domain decomposition context. The interface conditions between subdomains are enforced in terms of Lagrange mul...

متن کامل

A multiscale preconditioner for stochastic mortar mixed finite elements

0045-7825/$ see front matter 2010 Elsevier B.V. A doi:10.1016/j.cma.2010.10.015 ⇑ Corresponding author. E-mail address: [email protected] (T. Wilde The aim of this paper is to introduce a new approach to efficiently solve sequences of problems that typically arise when modeling flow in stochastic porous media. The governing equations are based on Darcy’s law with a stochastic permeability...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Multiscale Modeling & Simulation

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2012